Continued from o	outside	back	cover
------------------	---------	------	-------

Continue	a from ouiside odek cover
1388	A semi-Lagrangian scheme for the curve shortening flow in codimension-2 E. Carlini, M. Falcone, and R. Ferretti
1409	A three-dimensional finite volume method based on radial basis functions for the accurate computational modelling of nonlinear diffusion equations T.J. Moroney and I.W. Turner
1427	A simple and accurate Riemann solver for isothermal MHD A. Mignone
1442	Stretching-based diagnostics and reduction of chemical kinetic models with diffusion A. Adrover, F. Creta, M. Giona, and M. Valorani
1472	An improved SPH method: Towards higher order convergence G. Oger, M. Doring, B. Alessandrini, and P. Ferrant
1493	Conformal FDTD-methods to avoid time step reduction with and without cell enlargement Igor Zagorodnov, Rolf Schuhmann, and Thomas Weiland
1508	Outflow boundary conditions for the Fourier transformed three-dimensional Vlasov–Maxwell system B. Eliasson
1533	Finite difference/spectral approximations for the time-fractional diffusion equation Yumin Lin and Chuanju Xu
1553	Controllability method for the Helmholtz equation with higher-order discretizations Erkki Heikkola, Sanna Mönkölä, Anssi Pennanen, and Tuomo Rossi
1577	Adaptive absorbing boundary conditions for Schrödinger-type equations: Application to nonlinear and multi-dimensional problems Zhenli Xu, Houde Han, and Xiaonan Wu
1590	A new consistent splitting scheme for incompressible Navier-Stokes flows: A least-squares spectral element implementation J.P. Pontaza
1603	Mathematical modeling and simulation of aquatic and aerial animal locomotion T.Y. Hou, V.G. Stredie, and T.Y. Wu
1632	The streamline subgrid integration method: I. Quasi-monotonic second-order transport schemes Kao-San Yeh
1653	A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations Krzysztof J. Fidkowski and David L. Darmofal
1673	Condensed history Monte Carlo methods for photon transport problems Katherine Bhan and Jerome Spanier
1695	Methods for coupling radiation, ion, and electron energies in grey Implicit Monte Carlo T.M. Evans and J.D. Densmore
1721	An efficient direct parallel spectral-element solver for separable elliptic problems Yuen-Yick Kwan and Jie Shen
1736	A method for obtaining three-dimensional computational equilibrium of non-neutral plasmas using WARP K. Gomberoff, J. Wurtele, A. Friedman, D.P. Grote, and JL. Vay
1753	Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes Alex Kanevsky, Mark H. Carpenter, David Gottlieb, and Jan S. Hesthaven
1782	A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries Liang Ge and Fotis Sotiropoulos